

Investigating passive B_0 shimming for spinal cord imaging at 7T

Merve Kaptan¹, Nicolas Gross-Weege^{1,2}, S. Johanna Vannesjo³, Ulrike Horn¹, Alice Dabbagh¹, Robert Trampel¹, Harald E. Möller¹, Nikolaus Weiskopf^{1,4}, Falk Eippert¹

¹ Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; ² Siemens Healthcare GmbH, Erlangen, Germany; ³ Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; ⁴ Felix Bloch Institute for Solid State Physics, University of Leipzig, Leipzig, Germany

MerveKapta

mkaptan@cbs.mpg.de

Introduction

- fMRI of the human spinal cord holds great promise from a clinical perspective to delineate pathological mechanisms in disorders such as multiple sclerosis and chronic pain.
- One of the challenges of spinal cord fMRI is the strong magnetic field variations ^[1] which are especially prominent at higher field strength.
- A possible way to mitigate the field variations arising from air-tissue interfaces at the neck is to employ passive B₀ shimming.
- At lower field strengths, such implementations have been demonstrated for neck imaging ^[3,4] and a number of spinal fMRI studies ^[5,6] have employed this technique.

Methods

- Seven healthy volunteers were measured on a 7T MAGNETOM Terra scanner (Siemens Healthcare, Erlangen, Germany) equipped with a custom-built 24channel neck coil for cervical spinal cord imaging (MRI.TOOLS, Berlin, Germany).
- Images were acquired with/without the pads (SatPad Inc., West Chester, USA), with the acquisition order counterbalanced across volunteers.

The following image types were acquired:

 Field map of the entire cervical spinal cord: GRE field mapping; voxel size: 2×2×2mm³; assessment of field homogeneity

WTh1010

- T1-weighted image of the entire cervical spinal cord: 3D VIBE; voxel size: 0.8×0.8×0.8mm³; assessment of signalto-noise ratio (SNR)
- T2*-weighted image of the cervical cord (segments C5-C7): 2D multi-echo GRE; 5 echoes (echo range and spacing: 4.5ms-19.26ms, 3.65ms); voxel size: 0.4×0.4×3 mm³; assessment of gray/white matter contrast-tonoise ratio (CNR)

• Here, we evaluate the effects of a commercially available device for passive B_0 shimming on 7T cervical spinal cord imaging using pads filled with liquid perfluorocarbon.

Spinal Cord Toolbox

fMRI time-series (segments C5-C7): GE-EPI; TR: 1120ms; TE: 23ms; voxel size: 0.8×0.8×3mm³; positioned like ME-GRE; assessment of temporal-signal-to-noise-ratio (tSNR) as well as image quality and motion

Summary

- We investigated the impact of passive B₀ shimming via a commercially available product on cervical spinal cord acquisitions at the field strength of 7T.
- Building on previous observations at lower field strength ^[3,4], the use of a susceptibility-matched material around the neck strongly improved the field homogeneity with robust effects across different shimming options.
- While the use of SatPads did not lead to increased slice-wise SNR in T1weighted or CNR in T2* weighted structural images, it led to increased signal homogeneity across slices in both acquisitions and improved visual appearance.
- Although we did not observe an increase in fMRI data quality in terms of tSNR when using SatPads, we observed a strong reduction in both ghosting artifacts and subject movement. Additionally, we observed an increased similarity between (distortion-free) ME-GRE and EPI acquisitions, suggesting improved spatial fidelity.
- The use of passive shimming thus offers modest benefits for 7T spinal cord MRI and seems without any apparent draw-backs. Future research avenues might include investigating the effects of passive B₀ shimming when a larger EPI slice-stack is acquired.

References

- Stroman, P. W., Wheeler-Kingshott, C., Bacon, M., Schwab, J. M., Bosma, R., Brooks, J., Cadotte, D., Carlstedt, T., Ciccarelli, O., Cohen-Adad, J., Curt, A., Evangelou, N., Fehlings, M. G., Filippi, M., Kelley, B. J., Kollias, S., Mackay, A., Porro, C. A., Smith, S., Strittmatter, S. M., ... Tracey, I. (2014). The current state-of-the-art of spinal cord imaging: methods. *NeuroImage*, *84*, 1070– 1081.
- Barry, R. L., Vannesjo, S. J., By, S., Gore, J. C., & Smith, S. A. (2018). Spinal cord MRI at 7T. *NeuroImage*, 168, 437–451.
- 3. Cox, H., Dillon W. P. (1995). Low-cost device for avoiding bulk susceptibility artifacts in chemical-selective fat saturation MR of the head and neck. *Am J Neuroradiol.* 16:1367–1369.
- Lee, G. C., Goodwill, P. W., Phuong, K., Inglis, B. A., Scott, G. C., Hargreaves, B. A., Li, L., Chen, A. C., Shah, R. N., & Conolly, S. M. (2010). Pyrolytic graphite foam: a passive magnetic susceptibility matching material. *Journal of Magnetic Resonance Imaging*, 32(3), 684–691.
- Weber, K. A., 2nd, Chen, Y., Wang, X., Kahnt, T., & Parrish, T. B. (2016). Functional magnetic resonance imaging of the cervical spinal cord during thermal stimulation across consecutive runs. *NeuroImage*, 143, 267–279.
- Weber, K. A., 2nd, Chen, Y., Wang, X., Kahnt, T., & Parrish, T. B. (2016). Lateralization of cervical spinal cord activity during an isometric upper extremity motor task with functional magnetic resonance imaging. *NeuroImage*, *125*, 233–243.